A Decade-Long Study on Impact, Recovery, and Resilience in Louisiana Salt Marshes: The Evolution of the Oil Transformation Compounds and Plant-Soil-Microbial Responses to the Deepwater Horizon Oil Spill
Implementing Organization
Florida State University
Overview
DWH Project Funding
$596,256
Known Leveraged Funding
$0
Funding Organization
Gulf of Mexico Research Initiative (GoMRI)
Funding Program
Gulf of Mexico Research Initiative GoMRI Grant Program
Details
Project Category
Science
Project Actions
Environmental Research
Targeted Resources
Wetlands/Marshes/Estuaries
Project Description
The Deepwater Horizon (DWH) oil spill exposed the nation’s largest and most productive wetland-estuary, the Mississippi River Delta coastal wetland ecosystem, to an unprecedented level of oil contamination and potential damage. The coastal marshes support a host of environmental and economic services that depend on a healthy, well-functioning plant-soil-microbial complex to drive the food web base. For 7 years, the PI’s team has monitored the effects of the DWH oil spill in Louisiana salt marshes through 16 field-based data collections that quantify the impacts and recovery of a broad array of flora, fauna and microbes. Continuation of this research in heavily-oiled shorelines where marsh plants that serve as foundation species suffered severe mortality is critical to assessment of coastal marsh recovery, which to-date is incomplete, and to a better understanding of marsh resiliency to oil contamination. This proposal will (1) document and catalogue the decade-long impact of DWH oil on the coastal marsh plant-soil-microbial complex; (2) quantify rates and controls of long-term recovery; (3) catalogue oil transformation compounds detected in oiled salt marsh sediments up to 10 years after the spill and determine their toxicity; and (4) identify potential correlation between vegetation, microbes and transformed oil compounds in oiled salt marshes.
Contact
Aixin HouNone
ahou@lsu.edu
Project Website
None
None