Project Page

Modeling Modification of Surface Oil Transport by Air/Sea Interactions and Tropical Storms

Implementing Organization

Florida State University

Overview

DWH Project Funding

$4,495,588

Known Leveraged Funding

$0

Funding Organization

Gulf of Mexico Research Initiative (GoMRI)

Funding Program

Gulf of Mexico Research Initiative (GoMRI) Grant Program

Details

Project Category

Science

Project Actions

Oil System Safety Research

Targeted Resources

Air-Sea Interactions

Project Description

Oil spills pose a serious threat to marine resources and can be highly destructive to nearby wetland and estuarine animal habitats. In order to limit the damage resulting from an oil spill and to facilitate efficient containment and cleanup efforts, response managers rely heavily on reports about a spill’s location, size and extent, as well as forecasts of surface oil locations. In the hours, days, and even months following any spill, information about surface winds and ocean waves is critically important to estimating the spill location and forecasting how the released oil will be transported. When dealing with large spills, floating oil can also substantially modify the wind and waves, which in turn modifies the movement of the spill. The prior work of Zheng et al. (1) used an idealized model to show that the above interactions between oil, wind, and waves substantially affected the oil’s motion; albeit with less impact than the strong currents associated with Gulf eddies. Numerical ocean and atmospheric models do not yet take into consideration these effects on oil transport. In this study, modifications of the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model (2) will account for these interactions under much more realistic environmental conditions and in a system that can ultimately be used to generate improved oil spill forecasts.

Contact

Yangxing Zheng
None
yzheng@fsu.edu
Project Website
Project Partners

None

Affiliated Institutions

None

+ View Raw Data